
Intel Architecture Software Developer’s Manual 40-21

B

B 40

40.1 BOUND—Check Array Index Against Bounds

Description
Determines if the first operand (array index) is within the bounds of an array specified the second 
operand (bounds operand). The array index is a signed integer located in a register. The bounds 
operand is a memory location that contains a pair of signed doubleword-integers (when the 
operand-size attribute is 32) or a pair of signed word-integers (when the operand-size attribute is 
16). The first doubleword (or word) is the lower bound of the array and the second doubleword (or 
word) is the upper bound of the array. The array index must be greater than or equal to the lower 
bound and less than or equal to the upper bound plus the operand size in bytes. If the index is not 
within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this exception is 
generated, the saved return instruction pointer points to the BOUND instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper limits 
of the array) is usually placed just before the array itself, making the limits addressable via a 
constant offset from the beginning of the array. Because the address of the array already will be 
present in a register, this practice avoids extra bus cycles to obtain the effective address of the array 
bounds.

Operation
IF (ArrayIndex < LowerBound OR ArrayIndex > (UppderBound + OperandSize/8]))

(* Below lower bound or above upper bound *)
THEN 

#BR;
FI;

Flags Affected
None.

Protected Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction Description

62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by 
m16&16

62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by 
m16&16



40-22 Intel Architecture Software Developer’s Manual

B

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.2 BSF—Bit Scan Forward

Description
Searches the source operand (second operand) for the least significant set bit (1 bit). If a least 
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The 
source operand can be a register or a memory location; the destination operand is a register. The bit 
index is an unsigned offset from bit 0 of the source operand. If the contents source operand are 0, 
the contents of the destination operand is undefined.

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← 0;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp + 1;
DEST ← temp;

OD;

Opcode Instruction Description

0F BC BSF r16,r/m16 Bit scan forward on r/m16

0F BC BSF r32,r/m32 Bit scan forward on r/m32



Intel Architecture Software Developer’s Manual 40-23

B

FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, 
SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.3 BSR—Bit Scan Reverse

Description
Searches the source operand (second operand) for the most significant set bit (1 bit). If a most 
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The 
source operand can be a register or a memory location; the destination operand is a register. The bit 
index is an unsigned offset from bit 0 of the source operand. If the contents source operand are 0, 
the contents of the destination operand is undefined.

Opcode Instruction Description

0F BD BSR r16,r/m16 Bit scan reverse on r/m16

0F BD BSR r32,r/m32 Bit scan reverse on r/m32



40-24 Intel Architecture Software Developer’s Manual

B

Operation
IF SRC = 0

THEN
ZF ← 1;
DEST is undefined;

ELSE
ZF ← 0;
temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp − 1;
DEST ← temp;

OD;
FI;

Flags Affected
The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, 
SF, AF, and PF, flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.4 BSWAP—Byte Swap

Opcode Instruction Description

0F C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.



Intel Architecture Software Developer’s Manual 40-25

B

Description
Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits 24 
through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is provided 
for converting little-endian values to big-endian format and vice versa. 

To swap bytes in a word value (16-bit register), use the XCHG instruction. When the BSWAP 
instruction references a 16-bit register, the result is undefined.

Intel Architecture Compatibility
The BSWAP instruction is not supported on Intel Architecture processors earlier than the Intel486 
processor family. For compatibility with this instruction, include functionally equivalent code 
for execution on Intel processors earlier than the Intel486 processor family.

Operation
TEMP ← DEST
DEST(7..0) ← TEMP(31..24)
DEST(15..8) ← TEMP(23..16)
DEST(23..16) ← TEMP(15..8)
DEST(31..24) ← TEMP(7..0)

Flags Affected
None.

Exceptions (All Operating Modes)
None.

40.5 BT—Bit Test

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position 
designated by the bit offset operand (second operand) and stores the value of the bit in the CF flag. 
The bit base operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value. If the bit base operand specifies a register, the instruction takes the modulo 
16 or 32 (depending on the register size) of the bit offset operand, allowing any bit position to be 
selected in a 16- or 32-bit register, respectively (see Figure 38-1). If the bit base operand specifies a 
memory location, it represents the address of the byte in memory that contains the bit base (bit 0 of 
the specified byte) of the bit string (see Figure 38-2). The offset operand then selects a bit position 
within the range −231 to 231 − 1 for a register offset and 0 to 31 for an immediate offset.

Opcode Instruction Description

0F A3 BT r/m16,r16 Store selected bit in CF flag

0F A3 BT r/m32,r32 Store selected bit in CF flag

0F BA /4 ib BT r/m16,imm8 Store selected bit in CF flag

0F BA /4 ib BT r/m32,imm8 Store selected bit in CF flag



40-26 Intel Architecture Software Developer’s Manual

B

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. In this case, the low-order 
3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are stored in the 
immediate bit offset field, and the high-order bits are shifted and combined with the byte 
displacement in the addressing mode by the assembler. The processor will ignore the high order 
bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory 
address for a 32-bit operand size, using by the following relationship:
Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this 
relationship:
Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using 
this bit addressing mechanism, software should avoid referencing areas of memory close to address 
space holes. In particular, it should avoid references to memory-mapped I/O registers. Instead, 
software should use the MOV instructions to load from or store to these addresses, and use the 
register form of these instructions to manipulate the data.

Operation
CF ← Bit(BitBase, BitOffset)

Flags Affected
The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.



Intel Architecture Software Developer’s Manual 40-27

B

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.6 BTC—Bit Test and Complement

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position 
designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and 
complements the selected bit in the bit string. The bit base operand can be a register or a memory 
location; the bit offset operand can be a register or an immediate value. If the bit base operand 
specifies a register, the instruction takes the modulo 16 or 32 (depending on the register size) of the 
bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register, respectively 
(see Figure 38-1). If the bit base operand specifies a memory location, it represents the address of 
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string (see 
Figure 38-2). The offset operand then selects a bit position within the range −231 to 231 − 1 for a 
register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in 
this chapter for more information on this addressing mechanism.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected
The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF, AF, 
and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Opcode Instruction Description

0F BB BTC r/m16,r16 Store selected bit in CF flag and complement

0F BB BTC r/m32,r32 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

0F BA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement



40-28 Intel Architecture Software Developer’s Manual

B

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.7 BTR—Bit Test and Reset

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position 
designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and 
clears the selected bit in the bit string to 0. The bit base operand can be a register or a memory 
location; the bit offset operand can be a register or an immediate value. If the bit base operand 
specifies a register, the instruction takes the modulo 16 or 32 (depending on the register size) of the 
bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register, respectively 
(see Figure 38-1). If the bit base operand specifies a memory location, it represents the address of 
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string (see 
Figure 38-2). The offset operand then selects a bit position within the range −231 to 231 − 1 for a 
register offset and 0 to 31 for an immediate offset.

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in 
this chapter for more information on this addressing mechanism.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 0;

Flags Affected
The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and PF 
flags are undefined.

Opcode Instruction Description

0F B3 BTR r/m16,r16 Store selected bit in CF flag and clear

0F B3 BTR r/m32,r32 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

0F BA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear



Intel Architecture Software Developer’s Manual 40-29

B

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

40.8 BTS—Bit Test and Set

Description
Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position 
designated by the bit offset operand (second operand), stores the value of the bit in the CF flag, and 
sets the selected bit in the bit string to 1. The bit base operand can be a register or a memory 
location; the bit offset operand can be a register or an immediate value. If the bit base operand 
specifies a register, the instruction takes the modulo 16 or 32 (depending on the register size) of the 
bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register, respectively 
(see Figure 38-1). If the bit base operand specifies a memory location, it represents the address of 
the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string (see 
Figure 38-2). The offset operand then selects a bit position within the range −231 to 231 − 1 for a 
register offset and 0 to 31 for an immediate offset.

Opcode Instruction Description

0F AB BTS r/m16,r16 Store selected bit in CF flag and set

0F AB BTS r/m32,r32 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m16,imm8 Store selected bit in CF flag and set

0F BA /5 ib BTS r/m32,imm8 Store selected bit in CF flag and set



40-30 Intel Architecture Software Developer’s Manual

B

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. See “BT—Bit Test” in 
this chapter for more information on this addressing mechanism.

Operation
CF ← Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) ← 1;

Flags Affected
The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF flags 
are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS 

segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.


